Engineering Measurements

Chapter Two

Analysis of experimental data

By

Laith Batarseh

Suppose we have a set of observations $x_{1}, x_{2}, \ldots, x_{n}$. The sum of the squares of their deviations from some mean value is:

$$
S=\sum_{i=1}^{n}\left(x_{i}-x_{m}\right)^{2}
$$

Now, suppose we wish to minimize S with respect to the mean value x_{m}.
We set

$$
\frac{\partial S}{\partial x_{m}}=0=\sum_{i=1}^{n}-2\left(x_{i}-x_{m}\right)=-2 \sum_{i=1}^{n} x_{i}-n x_{m}
$$

where n is the number of observations. We find that

$$
x_{m}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

This is the simplest example of method of least square

Method of Least Squares

Curve fitting

\& In experimental work, we change some variables and measure others. The first type of variables are called independent variables (x) and the other kind can be presented in is called dependent variables (y). So, the collected data as arranged pairs (\mathbf{x}, y)

* It is more convenient from the mathematical point of view to represent the relation between the arranged pairs as: $y=f(x)$
*The process where a function is used to describe a set of points pairs: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\left(x_{n}, y_{n}\right)$ is called curve fitting
\& When we have the case of precise points, the fitting is called interpolation.
*When we have the case of imprecise points, the fitting is called regression.

Method of Least Squares

Curve fitting

*To minimize the quantity:

$$
S=\sum_{i=1}^{n}\left(y_{i}-a x-b\right)^{2}
$$

*Now set the derivatives with respect to (a) and (b) to zero. With some mathematical manipulation, we will have :
$a=\frac{n \sum x_{i} y_{i}-\left(\sum x_{i}\right)\left(\sum y_{i}\right)}{n \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}} \quad b=\frac{\left(\sum y_{i}\right)\left(\sum x_{i}^{2}\right)-\left(\sum x_{i} y_{i}\right)\left(\sum x_{i}\right)}{n\left(\sum x_{i}^{2}\right)-\left(\sum x_{i}\right)^{2}}$
*We designate the value of $(\mathbf{y}=\mathbf{a x}+\mathbf{b})$ as: $\hat{y}=a x+b$

Curve fitting

*The standard error can be as
Standard error $=\sqrt{\frac{\sum\left(y_{i}-\hat{y}_{i}\right)^{2}}{n-2}}=\sqrt{\frac{\sum\left(y_{i}-a x_{i}-b\right)^{2}}{n-2}}$
\& The method of least squares insure the minimum value of error in curve fitting:
From the following data obtain y as a linear function of x using the method of least squares

x_{i}	y_{i}
1.0	1.2
1.6	2.0
3.4	2.4
4.0	3.5
5.2	3.5

Solution

We need to find $\mathbf{y}=\mathrm{ax}+\mathrm{b}$. to do that, we need to find a and b :
$a=\frac{(5)(44.76)-(15.2)(12.6)}{(5)(58.16)-(15.2)^{2}}=0.540 \quad b=\frac{(12.6)(58.16)-(44.76)(15.2)}{(5)(58.16)-(15.2)^{2}}=0.879$

So: $\mathbf{y}=0.540 \boldsymbol{x}+0.879$

x_{i}	y_{i}	$x_{i} y_{i}$	x_{i}^{2}
1.0	1.2	1.2	1.0
1.6	2.0	3.2	2.56
3.4	2.4	$\mathbf{8 . 1 6}$	$\mathbf{1 1 . 5 6}$
4.0	3.5	14.0	16.0
5.2	3.5	18.2	27.04
$\sum=15.2$	$\sum=12.6$	44.76	58.16

